Skip to content

Search Predicates and Data Types

This page lists all of the comparison predicates that JanusGraph supports in global graph search and local traversals.

Compare Predicate

The Compare enum specifies the following comparison predicates used for index query construction and used in the examples above:

  • eq (equal)
  • neq (not equal)
  • gt (greater than)
  • gte (greater than or equal)
  • lt (less than)
  • lte (less than or equal)

All comparison predicates are supported by String, numeric, Date and Instant data types. Boolean and UUID data types support the eq and neq comparison predicates.

eq and neq can be used on Boolean and UUID.

Text Predicate

The Text enum specifies the Text Search used to query for matching text or string values. We differentiate between two types of predicates:

  • Text search predicates which match against the individual words inside a text string after it has been tokenized. These predicates are not case sensitive.
    • textContains: is true if (at least) one word inside the text string matches the query string
    • textContainsPrefix: is true if (at least) one word inside the text string begins with the query string
    • textContainsRegex: is true if (at least) one word inside the text string matches the given regular expression
    • textContainsFuzzy: is true if (at least) one word inside the text string is similar to the query String (based on Levenshtein edit distance)
  • String search predicates which match against the entire string value
    • textPrefix: if the string value starts with the given query string
    • textRegex: if the string value matches the given regular expression in its entirety
    • textFuzzy: if the string value is similar to the given query string (based on Levenshtein edit distance)

See Text Search for more information about full-text and string search.

Geo Predicate

The Geo enum specifies geo-location predicates.

  • geoIntersect which holds true if the two geometric objects have at least one point in common (opposite of geoDisjoint).
  • geoWithin which holds true if one geometric object contains the other.
  • geoDisjoint which holds true if the two geometric objects have no points in common (opposite of geoIntersect).
  • geoContains which holds true if one geometric object is contained by the other.

See Geo Mapping for more information about geo search.

Query Examples

The following query examples demonstrate some of the predicates on the tutorial graph.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
// 1) Find vertices with the name "hercules"
g.V().has("name", "hercules")
// 2) Find all vertices with an age greater than 50
g.V().has("age", gt(50))
// or find all vertices between 1000 (inclusive) and 5000 (exclusive) years of age and order by ascending age
g.V().has("age", inside(1000, 5000)).order().by("age", asc)
// which returns the same result set as the following query but in reverse order
g.V().has("age", inside(1000, 5000)).order().by("age", desc)
// 3) Find all edges where the place is at most 50 kilometers from the given latitude-longitude pair
g.E().has("place", geoWithin(Geoshape.circle(37.97, 23.72, 50)))
// 4) Find all edges where reason contains the word "loves"
g.E().has("reason", textContains("loves"))
// or all edges which contain two words (need to chunk into individual words)
g.E().has("reason", textContains("loves")).has("reason", textContains("breezes"))
// or all edges which contain words that start with "lov"
g.E().has("reason", textContainsPrefix("lov"))
// or all edges which contain words that match the regular expression "br[ez]*s" in their entirety
g.E().has("reason", textContainsRegex("br[ez]*s"))
// or all edges which contain words similar to "love"
g.E().has("reason", textContainsFuzzy("love"))
// 5) Find all vertices older than a thousand years and named "saturn"
g.V().has("age", gt(1000)).has("name", "saturn")

Data Type Support

While JanusGraph's composite indexes support any data type that can be stored in JanusGraph, the mixed indexes are limited to the following data types.

  • Byte
  • Short
  • Integer
  • Long
  • Float
  • Double
  • String
  • Geoshape
  • Date
  • Instant
  • UUID

Additional data types will be supported in the future.

Geoshape Data Type

The Geoshape data type supports representing a point, circle, box, line, polygon, multi-point, multi-line and multi-polygon. Index backends currently support indexing points, circles, boxes, lines, polygons, multi-point, multi-line, multi-polygon and geometry collection. Geospatial index lookups are only supported via mixed indexes.

To construct a Geoshape use the following methods:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
 //lat, lng
Geoshape.point(37.97, 23.72)
//lat, lng, radius in km
Geoshape.circle(37.97, 23.72, 50)
//SW lat, SW lng, NE lat, NE lng
Geoshape.box(37.97, 23.72, 38.97, 24.72)
//WKT
Geoshape.fromWkt("POLYGON ((35.4 48.9, 35.6 48.9, 35.6 49.1, 35.4 49.1, 35.4 48.9))")
//MultiPoint
Geoshape.geoshape(Geoshape.getShapeFactory().multiPoint().pointXY(60.0, 60.0).pointXY(120.0, 60.0)
  .build())
//MultiLine
Geoshape.geoshape(Geoshape.getShapeFactory().multiLineString()
  .add(Geoshape.getShapeFactory().lineString().pointXY(59.0, 60.0).pointXY(61.0, 60.0))
  .add(Geoshape.getShapeFactory().lineString().pointXY(119.0, 60.0).pointXY(121.0, 60.0)).build())
//MultiPolygon
Geoshape.geoshape(Geoshape.getShapeFactory().multiPolygon()
  .add(Geoshape.getShapeFactory().polygon().pointXY(59.0, 59.0).pointXY(61.0, 59.0)
    .pointXY(61.0, 61.0).pointXY(59.0, 61.0).pointXY(59.0, 59.0))
  .add(Geoshape.getShapeFactory().polygon().pointXY(119.0, 59.0).pointXY(121.0, 59.0)
    .pointXY(121.0, 61.0).pointXY(119.0, 61.0).pointXY(119.0, 59.0)).build())
//GeometryCollection
Geoshape.geoshape(Geoshape.getGeometryCollectionBuilder()
  .add(Geoshape.getShapeFactory().pointXY(60.0, 60.0))
  .add(Geoshape.getShapeFactory().lineString().pointXY(119.0, 60.0).pointXY(121.0, 60.0).build())
  .add(Geoshape.getShapeFactory().polygon().pointXY(119.0, 59.0).pointXY(121.0, 59.0)
    .pointXY(121.0, 61.0).pointXY(119.0, 61.0).pointXY(119.0, 59.0)).build())

In addition, when importing a graph via GraphSON the geometry may be represented by GeoJSON:

1
"37.97, 23.72"
1
[37.97, 23.72]
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
{
  "type": "Feature",
  "geometry": {
    "type": "Point",
    "coordinates": [125.6, 10.1]
  },
  "properties": {
    "name": "Dinagat Islands"
  }
}
1
2
3
4
{
  "type": "Point",
  "coordinates": [125.6, 10.1]
}

GeoJSON may be specified as Point, Circle, LineString or Polygon. Polygons must be closed. Note that unlike the JanusGraph API GeoJSON specifies coordinates as lng lat.

Collections

If you are using Elasticsearch then you can index properties with SET and LIST cardinality. For instance:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
mgmt = graph.openManagement()
nameProperty = mgmt.makePropertyKey("names").dataType(String.class).cardinality(Cardinality.SET).make()
mgmt.buildIndex("search", Vertex.class).addKey(nameProperty, Mapping.STRING.asParameter()).buildMixedIndex("search")
mgmt.commit()
//Insert a vertex
person = graph.addVertex()
person.property("names", "Robert")
person.property("names", "Bob")
graph.tx().commit()
//Now query it
g.V().has("names", "Bob").count().next() //1
g.V().has("names", "Robert").count().next() //1